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Abstract Protease inhibitors are highly active diverse family of poly(peptides) that are generally present in high 

concentrations in the storage tissues of the plants such as seeds and tubers. They play important roles in the regulation of 

proteases and the defence mechanism of plants against pathogens and display antimicrobial, antitumor and antiviral 

properties. Protease inhibitors have proved to be pharmacologically efficient tools in curing infections and systemic diseases 

via control of proteolysis. Recently, the outbreak of coronavirus (COVID-19) from Wuhan city of China has caused a global 

pandemic which has put the entire world on a standstill. Although the entire world has diverted all their efforts in finding an 

appropriate preventive and cure strategy, yet till date no success has been obtained. Since various viral diseases have been 

successfully cured by inhibition of viral proteases which are necessary for proteolytic processing of polyproteins, the 

inhibition of the proteases present on the surface of SARS-CoV-2 using protease inhibitors could prove to be fruitful in the 

treatment of this disease. This review gives a detail information of several natural protease inhibitors present in plants and 

their antiviral potential. The phytomolecules may be used for prophylaxis and effective therapeutics for the ongoing 

COVID-19 disease.  
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Key highlights 

 Plants are natural sources of protease inhibitors 

(PIs).  

 In plants, PIs are known to act in the defence 

mechanism against pathogens. 

 Plant PIs have been known to possess antiviral 

activities against several pathogenic viruses such 

as HIV, Hepatitis C virus and human 

cytomegalovirus (HCMV). 

 Plant PIs can inhibit the main protease (Mpro or 

3CL) of SARS-CoV-2 essential for processing of 

the polyproteins of the virus into functional 

proteins. 

 Plant PIs also act as inhibitory molecules against 
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TMPRSS2, a transmembrane protein present on 

the host cell, required by the virus to enter into 

the host cell. 

 

Graphical abstract 

Introduction 

 

Proteases (peptidases or proteinases) are one of the most 

important class of hydrolytic enzymes with discernible 

roles in several physiological and biochemical processes. 

Even though these enzymes are essential for maintenance 

and survival of their host as they are involved in signal 

transduction, protein-protein interaction, inflammatory 

response, protein catabolism, blood coagulation and 

digestion, their regulation is very crucial as they as they 

can be potentially harmful [1.2].  

Protease inhibitors (PIs) are highly active compounds 

which are involved in important physiological reactions 

related to metabolism, cell physiology and regulation of 

proteolytic action. In a number of biological pursuits like 

blood clotting, apoptosis, hormone processing and 

inflammation, the PIs are now treated as very important 

signaling molecules [3]. They are widely distributed in 

plants and animals. In plants, PIs are present as small 

proteins in the storage tissues such as seeds and tubers in 

high concentrations and in other tissues they exist in low 

concentrations. Plant PIs act as storage proteins in the form 

of nitrogen sources, are also involved in modulation of 

enzymatic processes, regulation of apoptosis and defence 

mechanism against animals, insects and microorganisms 

[4]. Plant PIs possess a notable resistance to heat treatment 

and a high stability against alterations in ionic strength, pH, 

proteolysis as well as denaturing agents due of the high 

content of cysteine residues in disulfide bridges [5]. 

Several recent investigations report novel biologic 

activities for plant PIs such as antimicrobial activities, 

anticoagulant activities, antioxidant action as well as 

inhibition of tumor-cell growth; thus marking them potent 

molecules for inactivating proteases involved in several 

human diseases like arthritis, pancreatitis, thrombosis, 

emphysema, hypertension, cardiovascular morbidities, 

neurodegenerative diseases (such as Alzheimer’s disease) 

and muscular dystrophy. They have been employed in 

several fields of biotechnology and agriculture and control 

of the spread of several pathogens that cause life 

threatening diseases like cancer, AIDS, hepatitis, malaria 

and various others have proved to be prevented by using 

plant PIs in drug design [5]. In order to be used as 

therapeutics in humans, the PIs should be capable of 

inhibiting each of the major intestinal proteases, such as 

pancreatic trypsin, α-chymotrypsin, as well as elastase and 

must be nontoxic, too. PIs are being commercially used for 

deterrence of protease-induced perianal dermatitis and 

several nontoxic PIs have been isolated and purified from 

barley seeds, cabbage leaves and Streptomyces [6]. 
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PIs are found in plants belonging to a variety of systematic 

groups especially those belonging to the Solanaceae family 

harbour several high levels of PIs. [6]. In plants, PIs were 

first discovered as chymotrypsin and trypsin inhibitors in 

tomatoes infected with Phytophthora infestans and were 

correlated to plant resistance to pathogens [7]. Later serine 

PIs of 20-24 kDa were found in potato tubers in response 

to infection with P. infestans and mechanical wounding 

[8,9].  

 

Classification of plant protease inhibitors 

On the basis of primary and tertiary structure, including the 

number and position of disulphide bonds and active sites, 

PIs can be classified in four groups according to the class 

of proteases they inhibit: serine protease, cysteine protease, 

metallocarboxy-protease or aspartic protease [10]. Based 

on structural and biochemical properties, plant PIs have 

also been classified as serpins and Bowman-Birk serine 

(BBIs), cysteine, potato type I and type II PIs, cereal 

trypsin/α-amylase, mustard trypsin, squash inhibitors, 

metallocarboxypeptidase and soybean trypsin (Kunitz) 

inhibitors (Table 1). On the basis of their amino acid 

similarities and the structures obtained, 48 identified plant 

PIs have been grouped into 26 related superfamilies (or 

clans). According to the MEROPS database, the inhibitors 

have 82 family members [2]. Different classes of plant PIs 

exhibit different mechanisms through which they interact 

with the target proteases. Some of the PIs utilize an 

irreversible inhibition of proteolytic activity (e.g. serpins) 

while most of them exhibit a canonical-competitive 

inhibition mode via ‘substrate-like’ binding to the catalytic 

domain of the targeted protease (e.g., BBIs and Kunitz 

inhibitors) or they make use of a non-catalytically 

competitive inhibition (e.g. cystatins or mustard-type PI) 

else they may act via a mixed mode, where the primary 

competitive binding to the active site is supported by a 

secondary binding event [e.g. metalloprotease inhibitors; 

11]. 

 

Table 1: Plant protease inhibitors of different families. 

Family Protease inhibitor Plant source Characteristic Reference 

Serpins At-serpin 1 Arabidopsis thaliana Acts against metacaspase in vivo and plays role 

in plant immunity 

[32] 

OSZa-d Oat (Avena sativa L.) grain OSZa and OSZb are 

efficient inhibitors of pancreatic elastase.  

 

OSZb is an inhibitor of chymotrypsin whereas 

OSZc is a fast inhibitor of trypsin.  

 

Together they display a broader activity against 

the digestive serine proteinases than the other 

serpins from rye, barley or wheat. 

[33] 
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CmPS-1  

(Cucurbita maxima 

phloem 

serpin-1) 

Cucurbita maxima Possess anti-elastase activity. 

May impart resistance against bacteria, insects 

and phytoplasma. 

[18,34] 

WSZI Triticum aestivum Inhibits chymotrypsin and Cathepsin G [11] 

HorvuZx (BSZx) Hordeum vulgare Inhibits trypsin, chymotrypsin, Factor Xa, 

thrombin, Factor VIIa, plasma kallikarein and 

leukocyte elastase. 

[11] 

  Kunitz Kunitz trypsin 

inhibitor 

Artocarpus 

Integrifolia  (Jackfruit) 

Inhibits elastase, trypsin and chymotrypsin. 

 

 However, it displays a very poor action on 

Streptomyces 

caespitosus and Aspergillus oryzae proteases 

[35] 

Tamarind Kunitz 

inhibitor 

Tamarindus indica Inhibits trypsin and Factor Xa [11] 

 

SKTI-3 

 

 

Glycine max Inhibits plasmin, human Factor XIIa, plasmin 

kallikrein, trypsin, chymoreypsin 

[11] 

PdKI-2 

 

Pithecelobium 

dumosum seed 

Inhibits trypsin as well as papain, a cysteine 

protease. Active against digestive enzyme of 

larvae from 

diverse orders and hence can be used as a potent 

insect 

antifeedant 

[36] 

Kunitz inhibitor CPTI Cicer arietinum Show differential inhibitory activity against 

trypsin, chymotrypsin, H. armigera gut 

proteases 

and bacterial protease(s) 

[37] 

PFTI 

 

Plathymenia 

foliolosa 

Inhibits bovine trypsin and bovine 

chymotrypsin.  

 

Exhibits 

significant inhibitory activity against on larval 

midgut 

proteases of A. kuehniella and D. saccharalis 

[38] 
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PCP1 6.6 and PCPI 

8.3 

Solanum tuberosum Possesses inhibitory action against cathepsin B, 

H and L. 

 

Also inhibits dipeptidyl peptidase I and 

Clostripain. 

[11] 

Bowman birk 

type 

inhibitors 

(BBI) 

Soybean BBI 

(Isotype 2-II; ̴8 kDa) 

 

G. max Inhibits trypsin, chymotrypsin, mast cell 

chymase, cathepsin G, matriptase, leukocyte 

elastase, duadenase 

[11] 

BTCI Vigna unguiculata (black eyed 

pea) 

Trypsin/chymotrypsin inhibitor. 

 

 Moderately active against the digestive 

chymotrypsin of adult insects 

[39] 

AsPIs Acacia Senegal seeds Highly active against serine proteases. Possess 

remarkable inhibitory activity towards 

total gut proteolytic enzymes followed by 

trypsin and 

chymotrypsin and retards the growth and 

development 

of H. armigera 

[40] 

BI-I (seven isotypes 

I-VII) 

Ananas comosus Possesses inhibitory activity against trypsin, 

papain, bormelain, cathepsin L and 

chymotrypsin 

[11] 

Phytocystatin Oryzacystatin I and II Oryza sativa 

 

Inhibits cathepsin B, Hand L and Legumain  [41,42] 

SQAPI Cucurbita maxima Inhibits pepsin proteases [43] 

Corn cystatin-I Zea mays Inhibits Cathepsin H and L [44] 

Potato 

inhibitor 

family 

CI-1 H. vulgare Inhibitor of trypsin, chymotrypsin, subtilin and 

neutrophil elastase 

[45] 

PSI- 1.1 Capsicum annuum Trypsin and chymotrypsin inhibitor [11] 

TI-II Solanum lycopersicum Inhibitor of trypsin, chymotrypsin and subtilisin [46] 

PI-2 S. tuberosum Trypsin and chymotrypsin inhibitor [11] 

Cereal 

inhibitor and 

squash 

inhibitor 

Corn Hageman factor 

inhibitor 

 

Z. mays Inhibitors of serine proteases and α amylase [47] 

RATI Eleusine coracana (ragi) Inhibitors of serine proteases and α amylase [48] 
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family BTI-CMe H. vulgare (barley) Trypsin inhibitor;  

 

Exhibits in vitro inhibition of trypsin-like 

proteases of the gut extracts of 

the fall armyworm, Spodoptera frugiperda 

(Lepidoptera: 

Noctuidae). 

[18] 

 

Serine PIs or serpins constitute a major class of plant PIs, 

which have been classified into more than 20 families. 

Serpins are mainly found in plants belonging to the 

Solanaceae, Fabaceae, Euphorbiaceae, Poaceae, and 

Cucurbitaceae families [12.13] with most of these being 

isolated from barley grain, wheat grain, rye, wild oats, 

pumpkin and A. thaliana [4]. In plants they are responsible 

for controlling protein synthesis and turnover besides 

physiological functions such as fertilization, growth &   

development, digestion, cell signaling or migration, 

immune defense, wound healing and disease progression. 

They play crucial role(s) in the pathogenesis and/or host 

tissue penetration of a number of diseases, such as 

cardiopulmonary disease and emphysema [14]. Serpins 

display a distinctive mechanism of irreversible inhibition 

termed as “suicide substrate” mechanism rather than the 

standard reversible inhibition mechanism followed by other 

PIs. They are metastable proteins with a molecular weight 

usually higher than 40 kDa [15].  

A report demonstrated that in serine PIs, the ‘reactive sites’ 

are mutating faster than amino acids in rest of the proteins, 

implying that their roles in defense against microorganisms 

(and insects) may exert a strong selection pressure on these 

proteins to conserve the reactive sites and that this 

selection may be related to plant defense [16]. Serine PIs 

also called serpins inhibit both serine and cysteine 

proteases [17]. Although several serpins with inhibitory 

activity against caspases and papain like cysteine proteases 

have been reported but they predominantly act against 

trypsin like serine proteinases [18].  

Another important class of PIs is the inhibitors of the 

cysteine proteases (cystatins or phytocustatins) which 

range in molecular weight from 10 kDa to 23 kDa. They 

inhibit cysteine proteases in a non-catalytically competent 

manner (i.e. although they do not bind to proteases in a 

strictly substrate-like manner but they still block access to 

the catalytic site; [11]. Cystatins regulate endogenous and 

heterologous cysteine proteases in a variety of 

physiological processes such as abiotic stress tolerance, 

protection against insects and nematodes via inhibition of 

digestive enzymes in their gut, regulation of peptidase 

activity during apoptosis, protection of cytosolic 

metabolism from intracellular peptidases released by 

incidental rupturing of protein bodies. They have been 

isolated and characterized from a number of vegetables and 

crop plants such as cabbage, apple, papaya, avocado, carrot, 

cowpea, ambrosia, castano, seeds of wheat, maize, 

sunflower, soybean, sugarcane, rice etc [5]. 

The Kunitz and BBI have been observed in the leguminous 

family and they generally range in size from 18-24 and 
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5-16 kDa, respectively. Both of them function via 

competitive inhibition of protease using the standard 

mechanism of substrate like binding to the catalytic site of 

the protease. Kuntiz inhibitors are known to function in the 

regulation of physiological homeostasis and in inhibition of 

pathogenic proteases while the expression of BBIs in plants 

is strongly induced by pathogenic invasion [11]. Other than 

this, a few aspartate and metalloprotease inhibitors have 

been reported which are isolated from potato tubers, 

sunflower flowers, barley and thistle (Cynara cardunculus). 

Metalloprotease are highly compact and stable proteins in 

nature because of the high content of disulphide bonds in 

them [5].  

 

Antiviral potential of plant PIs 

According to various reports, serine PIs in plants provide 

protection against various pests and pathogens. In most of 

the pathogenic organisms like bacteria, fungi, viruses, 

insects and vertebrates, proteases comprise around 1-5% of 

the genome among which majority of the functions are 

performed by serine proteases [14]. The NS3 protein of 

Hepatitis C virus (HCV) is a chymotrypsin like protein 

which contains a serine protease domain that is responsible 

for processing of the HCV polyprotein. The Human 

cytomegalovirus (HCMV) contains a Ser-His-His catalytic 

triad and therefore is a serine protease which is essential 

for capsid formation during viral replication [19,20]. 

Therefore, serpins can be effectively utilized to attenuate 

such serine proteases thereby providing protection against 

a wide variety of pathogens. Novel antiviral strategies 

include targeting either host or viral accessory protein to 

ultimately block viral replication or inhibit cellular proteins 

necessary for the virus life cycle. Proteolytic cleavage of 

the precursor hemagglutinin (HA0) into HA1 and HA2 

subunits by host proteases is essential for fusion of HA 

with the endosomal membrane and thus represents an 

essential step for viral infection [14]. The trypsin PIs from 

the leaf extract of Capsicum baccatum var. pendulum 

inoculated with Pepper yellow mosaic virus (PepYMV) 

significantly reduced the yellow mosaic viral infection [21]. 

The Cucumis metuliferus serine PIs (CmSPI) gene when 

overexpressed and silenced in Nicotiana benthamiana and 

Cucumis metuliferus displayed potyvirus resistance and 

synchronous development of potato ring spot viral 

symptoms, respectively [14]. The sunflower trypsin 

inhibitor (TI) from Helianthus annuus is the smallest 

known Bowman birk type inhibitors (BBI) which has been 

explored as a model peptide for drug design [22-24]. 

Various plant PIs displaying antiviral activity have been 

previously reported (Table 2). 

 

Table 2: Prominent plant protease inhibitors with antiviral activity. 

Protease inhibitor Plant source Antiviral activity Reference 

Capsicum  baccatum trypsin 

protease inhibitor 

Capsicum  baccatum var. 

Pendulum 

Reduction in the yellow mosaic virus 

infection of  Capsicum  baccatum 

[21] 

BSKTI (Kunitz trypsin protease G. max cv.Dull Black seeds Anti HIV-1 reverse transcriptase activity [27] 
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inhibitor) 

BvvTI (Kunitz trypsin protease 

inhibitor) 

B. variegate seeds Anti HIV-1 reverse transcriptase activity 

as well as antitumor activity against 

human nasopharyngeal cells 

[25] 

KBTI (Kunitz trypsin protease 

inhibitor) 

G. max seeds Anti HIV-1 reverse transcriptase activity 

as well as antitumor activity against 

human nasopharyngeal cells, breast cancer 

cells and hepatoma cells 

[26] 

Coumarin derivatives (aspartyl 

protease inhibitor) 

Fruits such as (bilberry, 

cloudberry), green tea, chicory, 

soy, higher plants such as 

Rutaceae and Umbelliferone, stem 

bark of Calophyllum dispar 

(Clusiaceae) 

Act against aspartyl proteases of 

retroviruses such as HIV. Potential 

therapeutic for malaria, Q fever, 

mycoplasmosis and, nucleoplasmosis 

[28,29] 

CmSPI (Cucumis metuliferus serine 

protease inhibitor) 

Cucumis metuliferus Overexpression of the gene provides 

resistance to potyvirus in Nicotiana   

benthamiana; Silencing of the CmSPI 

gene in Cucumis metuliferus results in 

development  of  potato ring  spot  

viral  symptoms 

[14] 

Novel trypsin-chymotrypsin inhibitor Vicia faba (bakla) seeds Anti HIV-1 reverse transcriptase activity 

as well as antifungal activity against 

Mycosphaerella arachidicola and 

Physalospora piricola. 

[30] 

Chymotrypsin inhibitor Acacia confusa seeds Anti HIV-1 reverse transcriptase activity [49] 

The Kunitz trypsin inhibitors isolated from B. variegate 

and G. max seeds termed BvvTI and KBTI, respectively, 

display significant activity against the HIV-1 reverse 

transcriptase. They also possessed anti-tumor activity 

against the human nasopharyngeal cancer cells, human 

breast cancer cells and hepatoma cells [25,26]. Another 

Kunitz trypsin inhibitor, BSKT1 isolated from G. max cv. 

Dull black seeds also possessed anti HIV-1 reverse 
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transcriptase activity [27]. According to the invention of 

Domagala et al., the derivatives of coumarin which is 

found in fruits (bilberry and cloudberry), green tea, chicory, 

soy, higher plants such as Rutaceae and Umbelliferone as 

well as the stem bark of Calophyllum dispar (Clusiaceae) 

are inhibitors of aspartyl proteases, especially the aspartyl 

proteases of retroviruses such as HIV and hence can be 

expected to be used as an antiviral agent in the treatment of 

retroviral infections. They also have been found to be 

potential therapeutics for treatment of malaria, 

mycoplasmosis, Q fever and mononucleosis [28,29]. Ye 

and Ng in 2002 isolated a novel trypsin chymotrypsin 

inhibitor from Vicia faba (commonly known as bakla in 

India) seeds which displayed anti HIV-1 reverse 

transcriptase activity as well as antifungal activity against 

Mycosphaerella arachidicola and Physalospora piricola 

[30]. A novel, fairly stable Kunitz trypsin inhibitor of 

serpin family was isolated from Allium sativum (garlic) by 

Shamsi and colleagues which could act as a potential non 

toxic therapeutic against a number of viral diseases [31]. 

 

The COVID-19 pandemic 

In December 2019, the city of Wuhan, the capital of Hubei 

province in China, reported the outbreak of a pulmonary 

disease caused by a novel strain of coronavirus and since 

then the virus has spread globally [50]. The spread of 

2019-nCoV, now officially known as severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) is still 

progressing world over despite of the severe containment 

measures being taken [51]. The virus consists of an RNA 

genome which is 82% identical to the SARS coronavirus 

(SARS-CoV) and both viruses belong to clade b of the 

genus Betacoronavirus and hence it has been named as 

SARS-CoV-2 and the disease caused by SARS-CoV-2 is 

called COVID-19 [52, 53]. Although less is known about 

the origin of the virus but on the basis of the sequence of 

the viral genome and the evolutionary analysis, bats have 

been suspected as their natural hosts and it has been 

supposed that in humans SARS-CoV-2 might have been 

transmitted from bats via some unknown intermediate host 

[54]. Within humans, the disease is transmitted by 

inhalation or contact with infected droplets released by an 

infected person and the incubation period ranges from 2 to 

14 d. The symptoms usually consist of fever, cough, sore 

throat, breathlessness, fatigue, malaise etc. Although the 

disease is mild in most people; but in some (usually the 

elderly and those with comorbidities), it may advance to 

pneumonia, acute respiratory distress syndrome (ARDS) 

and multi organ dysfunction. Many people are 

asymptomatic. The case fatality rate is estimated to range 

from 2 to 3%. It was listed as a potential global health 

emergency by WHO due to high mortality, high basic 

reproduction number and lack of clinically approved drugs 

and vaccines for COVID-19. India too has reported more 

than 92,700,00 of coronavirus cases along with 1,35,000 

deaths all over the country till Nov. 26, 2020.  

The replication cycle of the SARS-CoV-2 virus has been 

illustrated (Figure 1) to focus on therapeutics for efficient 

neutralization of virus or inhibition of some intervening 

virus adsorption or replication step(s). For entry into the 

host cell, the viral S protein binds to the host cellular 

receptor angiotensin converting enzyme 2 (ACE2). The 

binding requires the host cell surface associated 

trans-membrane protease serine 2 (TMPRSS) for cleavage 
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of the trimeric S protein [54]. After binding of the S protein 

and ACE2, there occurs a conformational change in the S 

protein which facilitates the fusion of the viral envelope 

with the host cell’s membrane through endosomal pathway. 

After entry into the host cell, the virus un-coats itself and 

releases its RNA, which is replicated and translates into 

viral replicase polyproteins. The polyproteins are then 

processed into functional proteins by the main protease of 

SARS-CoV-2, M
pro

 also called as 3CL protease. The viral 

proteins and the genomic RNA subsequently assemble into 

virions in the endoplasmic reticulum and Golgi and 

subsequently released out of the cell [55].  

 

Figure 1: Schematic representation of replication cycle of the 

SARS-CoV-2 and the potent inhibitory effects of plant PIs on its 

replication in human cells. 

 

Potent inhibitory effects of plant PIs on SARS CoV-19 

Most of the nation’s world-wide have been diverting their 

best efforts for the implementation of appropriate 

preventive and control strategies to deal with SARS 

CoV-19. Neither vaccines nor direct-acting antiviral drugs 

are available for the treatment of human and animal 

coronavirus infections [56]. The inhibition of viral 

proteases necessary for proteolytic processing of 

polyproteins has been a successful strategy in the 

pharmacological treatment of HIV and HCV, respectively, 

proving the potential of PIs for the treatment of viral 

infections. Similarly, the main protease of SARS-CoV-2, 

M
pro

 or 3CL is thought to be essential for viral replication 

and therefore, is regarded as promising target for plant PIs 

and antiviral pharmacotherapy [Figure 1; 57]. Inhibiting 

the activity of this enzyme would block viral replication in 

the infected host cells. Since no human proteases with 

similar cleavage specificity are known, inhibitors are 

unlikely to be toxic. Approved PIs including disulfiram, 

lopinavir and ritonavir have been reported to be active 

against SARS and MERS. Disulfiram, an approved drug to 

treat alcohol dependence, has been reported to inhibit the 

papain-like protease of MERS and SARS in cell cultures in 

vitro, but clinical evidence is lacking. According to the 

observation of Baden and colleagues, lopinavir–ritonavir 

combination did not seem to be highly effective in patients 

with COVID-19 [58] and adverse gastrointestinal effects 

were seen in approximately 13% of the patients [59]. Since 

better effective therapies for COVID-19 is the demand of 

the moment and plant PIs may prove to be potential 

therapeutic agents by inhibiting this main protease of the 

virus. 

As described before, TMPRSS plays a major role in 

2019-nCoV infection as it is the main protease which 

allows the fusion of the virus particles with human cells.  

Hence, because TMPRSS is required by the COVID-19 

virus to enter into the human cells, the inhibition of this 

protease by non toxic plant serine PIs may prove to be 
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potential treatment options in 2019-nCoV infection [Figure 

1; 60].  

 

Conclusion  

The review suggests that PIs are widely distributed in 

several plants where they play important role(s) in 

providing defense against pathogenic diseases. The plant 

PIs have been classified into different families on the basis 

of their structural similarity and protease inhibited. 

Because of their non toxic nature and fairly good stability, 

they have been employed in several biotechnological and 

pharmaceutical applications. The PIs are effective tools in 

inhibiting proteases associated with a number of diseases. 

They are also highly efficient in inhibiting viral proteases, 

they can be employed as a potential therapeutic in the 

treatment of the ongoing COVID-19 pandemic which has 

been declared by the WHO as a global emergency. Further 

docking and in vivo studies are required for finding the 

possible use of these plant PIs in the treatment of 

COVID-19. 
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